Coverage guided fuzzing (CGF) is an effective testing technique which has detected hundreds of thousands of bugs from various software applications. It focuses on maximizing code coverage to reveal more bugs during fuzzing. However, a higher coverage does not necessarily imply a better fault detection capability. Triggering a bug involves not only exercising the specific program path but also reaching interesting program states in that path. In this paper, we use mutation testing to improve CGF in detecting bugs. We use mutation scores as feedback to guide fuzzing towards detecting bugs rather than just covering code. To evaluate our approach, we conduct a well-designed experiment on 5 benchmarks. We choose the state-of-the-art fuzzing technique Zest as baseline and construct two modified techniques on it using our approach. The experimental results show that our approach can improve CGF in both code coverage and bug detection.


翻译:引导引信是一种有效的测试技术(CGF),它从各种软件应用程序中检测出数十万个错误。它侧重于最大限度地扩大代码覆盖范围,以在模糊过程中发现更多的错误。但是,更高的覆盖面并不一定意味着更好的故障检测能力。触发一个错误不仅涉及使用特定程序路径,而且涉及在这条路径上达到有趣的程序状态。在本文中,我们使用突变测试来改进计算机界面检测错误。我们用突变计作为反馈,指导检测错误而不是仅仅覆盖代码。为了评估我们的方法,我们进行了一个设计良好的5个基准的实验。我们选择了最先进的模糊技术作为基线,并用我们的方法设计了两种修改技术。实验结果显示,我们的方法可以在代码覆盖和错误检测两方面改进计算机界面。

0
下载
关闭预览

相关内容

国际期刊计算机图形学论坛(CGF)由欧洲图形协会和Wiley(前Blackwell)联合出版。CGF是有关计算机图形学的深入技术文章的领先期刊。 官网地址:http://dblp.uni-trier.de/db/journals/cgf/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
40+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
13+阅读 · 2021年10月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
40+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员