A real-time stuck pipe prediction methodology is proposed in this paper. We assume early signs of stuck pipe to be apparent when the drilling data behavior deviates from that from normal drilling operations. The definition of normalcy changes with drill string configuration or geological conditions. Here, a depth-domain data representation is adopted to capture the localized normal behavior. Several models, based on auto-encoder and variational auto-encoders, are trained on regular drilling data extracted from actual drilling data. When the trained model is applied to data sets before stuck incidents, eight incidents showed large reconstruction errors. These results suggest better performance than the previously reported supervised approach. Inter-comparison of various models reveals the robustness of our approach. The model performance depends on the featured parameter suggesting the need for multiple models in actual operation.
翻译:本文提出了实时卡住管道预测方法。 当钻探数据行为偏离正常钻探作业时,我们假定有早期的卡住管道迹象明显可见。 使用钻弦配置或地质条件来定义正常状态变化的定义。 在此, 采用了深度域数据表示法来捕捉局部正常行为。 根据自动编码器和变式自动编码器, 对几个模型进行了从实际钻探数据中提取的定期钻探数据培训。 当经过训练的模型在卡住事件之前应用到数据集时, 有八起事件显示出重大的重建错误。 这些结果表明, 与先前报告的监督方法相比, 表现更好。 各种模型的相互比较显示我们的方法的稳健性。 模型的性能取决于显示实际操作中需要多个模型的特征参数 。