Security is unarguably the most serious concern for Web applications, to which SQL injection (SQLi) attack is one of the most devastating attacks. Automatically testing SQLi vulnerabilities is of ultimate importance, yet is unfortunately far from trivial to implement. This is because the existence of a huge, or potentially infinite, number of variants and semantic possibilities of SQL leading to SQLi attacks on various Web applications. In this paper, we propose a deep natural language processing based tool, dubbed DeepSQLi, to generate test cases for detecting SQLi vulnerabilities. Through adopting deep learning based neural language model and sequence of words prediction, DeepSQLi is equipped with the ability to learn the semantic knowledge embedded in SQLi attacks, allowing it to translate user inputs (or a test case) into a new test case, which is semantically related and potentially more sophisticated. Experiments are conducted to compare DeepSQLi with SQLmap, a state-of-the-art SQLi testing automation tool, on six real-world Web applications that are of different scales, characteristics and domains. Empirical results demonstrate the effectiveness and the remarkable superiority of DeepSQLi over SQLmap, such that more SQLi vulnerabilities can be identified by using a less number of test cases, whilst running much faster.


翻译:SQL 输入 (SQLi) 攻击是最具破坏性的攻击之一。 自动测试 SQLi 弱点具有最终重要性, 但不幸的是远非执行无足轻重。 这是因为SQL 的变种数量巨大或潜在无限, SQL 的变种和语义可能性导致SQLi 攻击各种网络应用程序。 在本文中,我们提出了一个以深天然语言处理为基础的工具,称为DeepSQLi, 以生成检测 SQLi 弱点的测试案例。 通过采用基于深度学习的神经语言模型和字词预测序列, DeepSQLi 具备学习SQL 攻击中嵌入的语义知识的能力,使其能够将用户投入(或测试案例)转化为一个新的测试案例,这在语义上具有关联性,而且可能更为复杂。 我们进行了实验,将DeepSQLi 和SQL 测试工具的状态测试案例进行测试。 在六个真实世界的网络应用中,SQL 特征和测试性更显著的SQrvey 区域可以展示不同程度的Sral 。

0
下载
关闭预览

相关内容

【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
10+阅读 · 2020年4月5日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Top
微信扫码咨询专知VIP会员