Recommendation system is a common demand in daily life and matrix completion is a widely adopted technique for this task. However, most matrix completion methods lack semantic interpretation and usually result in weak-semantic recommendations. To this end, this paper proposes a $S$emantic $A$nalysis approach for $R$ecommendation systems $(SAR)$, which applies a two-level hierarchical generative process that assigns semantic properties and categories for user and item. $SAR$ learns semantic representations of users/items merely from user ratings on items, which offers a new path to recommendation by semantic matching with the learned representations. Extensive experiments demonstrate $SAR$ outperforms other state-of-the-art baselines substantially.
翻译:在日常生活中,建议系统是一种常见的需求,矩阵完成是这一任务广泛采用的一种技术,然而,大多数矩阵完成方法缺乏语义解释,通常导致提出薄弱的语义建议,为此,本文件提议对R$建议系统采用美元(SAR)美元分析法,采用两级等级分解程序,为用户和物品指定语义属性和类别。 美元仅从项目用户评级中学习用户/物品的语义表述,这为通过与所学方言匹配的方式提出建议提供了一条新途径。 广泛实验显示,SAR$大大优于其他最先进的基线。