Reductions in natural habitats urge that we better understand species' interconnection and how biological communities respond to environmental changes. However, ecological studies of species' interactions are limited by their geographic and taxonomic focus which can distort our understanding of interaction dynamics. We focus on bird-plant interactions that refer to situations of potential fruit consumption and seed dispersal. We develop an approach for predicting species' interactions that accounts for errors in the recorded interaction networks, addresses the geographic and taxonomic biases of existing studies, is based on latent factors to increase flexibility and borrow information across species, incorporates covariates in a flexible manner to inform the latent factors, and uses a meta-analysis data set from 85 individual studies. We focus on interactions among 232 birds and 511 plants in the Atlantic Forest, and identify 5% of pairs of species with an unrecorded interaction, but posterior probability that the interaction is possible over 80%. Finally, we develop a permutation-based variable importance procedure for latent factor network models and identify that a bird's body mass and a plant's fruit diameter are important in driving the presence of species interactions, with a multiplicative relationship that exhibits both a thresholding and a matching behavior.


翻译:自然生境的减少促使我们更好地了解物种的相互联系以及生物群落如何应对环境变化。然而,物种相互作用的生态研究受到地理和分类重点的限制,这可能会扭曲我们对互动动态的理解。我们侧重于鸟类和植物之间的相互作用,这些相互作用涉及潜在的水果消费和种子散布情况。我们开发了一种预测物种相互作用的方法,其中考虑到记录的互动网络中的错误,解决了现有研究的地理和分类偏见,其基础是增加灵活性的潜在因素,并借取物种间的信息,以灵活的方式纳入共变因素,以告知潜在因素,并使用85项单独研究的元分析数据集。我们侧重于大西洋森林232只鸟类和511只植物之间的互动,并查明5%的物种和5%的未记录的互动,但事后概率是这种相互作用有可能超过80%。最后,我们为潜在要素网络模型开发了一种基于变异性的重要程序,并查明鸟类的体积和植物的水果直径对于推动物种相互作用的存在十分重要,同时存在一种多复制性的关系,既展示了一种临界性和一种匹配的行为。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员