We formalize and analyze a fundamental component of differentiable neural architecture search (NAS): local "operation scoring" at each operation choice. We view existing operation scoring functions as inexact proxies for accuracy, and we find that they perform poorly when analyzed empirically on NAS benchmarks. From this perspective, we introduce a novel \textit{perturbation-based zero-cost operation scoring} (Zero-Cost-PT) approach, which utilizes zero-cost proxies that were recently studied in multi-trial NAS but degrade significantly on larger search spaces, typical for differentiable NAS. We conduct a thorough empirical evaluation on a number of NAS benchmarks and large search spaces, from NAS-Bench-201, NAS-Bench-1Shot1, NAS-Bench-Macro, to DARTS-like and MobileNet-like spaces, showing significant improvements in both search time and accuracy. On the ImageNet classification task on the DARTS search space, our approach improved accuracy compared to the best current training-free methods (TE-NAS) while being over 10$\times$ faster (total searching time 25 minutes on a single GPU), and observed significantly better transferability on architectures searched on the CIFAR-10 dataset with an accuracy increase of 1.8 pp. Our code is available at: https://github.com/zerocostptnas/zerocost_operation_score.


翻译:我们正式确定和分析不同神经结构搜索的基本组成部分:每个作业选择的地方“操作评分”,我们视现有操作评分功能为不精确的替代物,我们发现在对NAS基准进行实证分析时,这些评分功能的表现不尽如人意。从这个角度,我们引入了新型的Textit{turbation-基础零成本操作评分}(零成本-PT)方法,该方法利用了最近在多审NAS中研究的零成本代理物,但在更大的搜索空间中却显著下降,这是不同的NAS典型的典型。我们对现有NAS基准和大型搜索空间进行彻底的经验性评估,从NAS-Bench-201,NAS-Bench-1Shot1,NAS-Bench-1,NAS-Bench-Macro,到DARSS类似和移动网络的空域,在搜索时间和准确性两方面都有显著改进。关于DARSS搜索空间的图像网络分类任务,我们的方法比目前最佳的无培训方法(TE-NAS)的精确度有所提高,同时进行超过10美元/时间的搜索。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员