We analyze the general behavior of agglomerative clustering methods, and argue that their strategy yields establishment of a new reliable linkage at each step. However, in order to provide adaptive, density-consistent and flexible solutions, we propose to extract all the reliable linkages at each step, instead of the smallest one. This leads to a new agglomerative clustering strategy, called reliable agglomerative clustering, which similar to the standard agglomerative variant can be applied with all common criteria. Moreover, we prove that this strategy with the single linkage criterion yields a minimum spanning tree algorithm. We perform experiments on several real-world datasets to demonstrate the superior performance of this strategy, compared to the standard alternative.
翻译:我们分析集中集聚方法的一般行为,认为它们的战略在每个步骤都会产生新的可靠联系。然而,为了提供适应性、密度一致和灵活的解决方案,我们提议在每一个步骤,而不是最小的一步,抽取所有可靠的联系。这导致一种新的集中集聚战略,称为可靠的集中集聚,这类似于标准的集中集聚变,可以适用于所有共同标准。此外,我们证明这一战略采用单一联系标准可以产生一个最小的横跨树木算法。我们在几个真实世界的数据集上进行了实验,以证明这一战略比标准替代方法更优秀的业绩。