To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.


翻译:为解决协作过滤的广度和寒冷启动问题,研究人员通常利用侧面信息,如社交网络或项目属性等,提高建议性能。本文件认为知识图是侧面信息来源。为了解决现有基于嵌入和基于路径的方法对知识-绘图-认知建议的限制,我们提议Ripple 网络,这是一个将知识图自然纳入建议系统的端对端框架。与在水面上实际传播的波纹一样,Ripple 网络通过自动和迭接地扩展用户在知识图链接上的潜在兴趣,促进用户对知识实体组合的偏好。因此,用户历来点击的项目所激活的多个“振动器”被取代,形成用户对候选项目的偏好分布,可用于预测最后点击概率。我们通过在现实世界数据集上的广泛实验,显示Ripple 网络在各种情景(包括电影、书籍和新闻建议)中取得了巨大收益,超过几个州级基线。

7
下载
关闭预览

相关内容

LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
8+阅读 · 2019年5月20日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员