We disprove a 2002 conjecture of Dombi from additive number theory. More precisely, we find a set $A \subset N$ with the property that $N \setminus A$ is infinite, but the sequence $n \rightarrow |\{ (a,b,c) : n=a+b+c$ and $a,b,c \in A \}|$ counting the number of $3$-compositions is strictly increasing.
翻译:我们从添加数理论中推断出2002年Dombi的假设值。 更确切地说, 我们发现一套美元\ subset N$, 其属性为$N\ setminus A$是无限的, 但序列 $n\rightrow {( a, b, c) : n= a+b+c$ 和 $a, b, c = $a, b, c = $ = $ = $ = = 计算 $3, comb- = $ 。