Counterfactual reasoning -- envisioning hypothetical scenarios, or possible worlds, where some circumstances are different from what (f)actually occurred (counter-to-fact) -- is ubiquitous in human cognition. Conventionally, counterfactually-altered circumstances have been treated as "small miracles" that locally violate the laws of nature while sharing the same initial conditions. In Pearl's structural causal model (SCM) framework this is made mathematically rigorous via interventions that modify the causal laws while the values of exogenous variables are shared. In recent years, however, this purely interventionist account of counterfactuals has increasingly come under scrutiny from both philosophers and psychologists. Instead, they suggest a backtracking account of counterfactuals, according to which the causal laws remain unchanged in the counterfactual world; differences to the factual world are instead "backtracked" to altered initial conditions (exogenous variables). In the present work, we explore and formalise this alternative mode of counterfactual reasoning within the SCM framework. Despite ample evidence that humans backtrack, the present work constitutes, to the best of our knowledge, the first general account and algorithmisation of backtracking counterfactuals. We discuss our backtracking semantics in the context of related literature and draw connections to recent developments in explainable artificial intelligence (XAI).


翻译:反事实推理 -- -- 设想假设假设情景,或可能的世界,其中某些情况与(f)实际发生的(反事实)不同 -- -- 在人类认知中普遍存在反事实推理。 公约将反事实推理视为当地违反自然法则的“小奇迹”,同时分享相同的初始条件。在珍珠的结构性因果模型(SCM)框架中,通过修改因果关系法的干预措施,同时共享外源变量的价值,使这种结构因果模型在数学上变得严格。然而,近年来,哲学家和心理学家越来越关注这种纯粹干涉性的反事实陈述。相反,它们提出了反事实的反分析解释,根据这种解释,因果法律在反事实世界中保持不变;与事实世界的差异则“倒退”到初始条件(外源变量)的改变。在目前的工作中,我们探索并正式确定在SCM框架内反事实推理的替代模式。尽管有充足的证据表明人类背轨,但目前的工作构成反事实的纯粹干涉性陈述,反事实的推理学是反事实的反事实的反推理学,在我们的理论中,我们总轨上解释了我们总的逻辑。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员