Large-scale network inference with uncertainty quantification has important applications in natural, social, and medical sciences. The recent work of Fan, Fan, Han and Lv (2022) introduced a general framework of statistical inference on membership profiles in large networks (SIMPLE) for testing the sharp null hypothesis that a pair of given nodes share the same membership profiles. In real applications, there are often groups of nodes under investigation that may share similar membership profiles at the presence of relatively weaker signals than the setting considered in SIMPLE. To address these practical challenges, in this paper we propose a SIMPLE method with random coupling (SIMPLE-RC) for testing the non-sharp null hypothesis that a group of given nodes share similar (not necessarily identical) membership profiles under weaker signals. Utilizing the idea of random coupling, we construct our test as the maximum of the SIMPLE tests for subsampled node pairs from the group. Such technique reduces significantly the correlation among individual SIMPLE tests while largely maintaining the power, enabling delicate analysis on the asymptotic distributions of the SIMPLE-RC test. Our method and theory cover both the cases with and without node degree heterogeneity. These new theoretical developments are empowered by a second-order expansion of spiked eigenvectors under the $\ell_\infty$-norm, built upon our work for random matrices with weak spikes. Our theoretical results and the practical advantages of the newly suggested method are demonstrated through several simulation and real data examples.
翻译:在自然、社会和医学科学中,具有不确定性量化的大型网络推论具有重要的自然、社会和医学应用。范、范、汉和Lv(2022年)最近的工作对大型网络(SIMPLE)的成员构成概况进行了统计推论总框架,以测试一对特定节点共享相同成员构成概况的尖锐空假设。在实际应用中,调查中往往有一组节点在比SIMPLE所考虑的设置相对弱的信号中分享类似的成员构成概况。为了应对这些实际挑战,我们在本文件中提出了一种SIMPLE(SIMPLE-RC)方法,用于随机合并(SIMPLE-RC),用于测试一个非预示性不变的全局假设,即一个特定节点在较弱的信号下共享类似(不一定相同)成员构成概况。我们利用随机组合的概念,将我们的测试作为SIMPLEE测试组次采样配对组合的节点的最大测试。这种技术大大降低了个别SIMPLE测试之间的关联性,同时大体上保持了这种力量,使得能够对SIMPLE-RC的低位模型发展的随机分布进行微妙分布进行精确分析。我们的方法和理论上的一些案例都以不具有某种程度。我们理论和最强的理论性地展示。我们进行。这些理论和最强的理论式的理论性研究。