In the classic wiretap model, Alice wishes to reliably communicate to Bob without being overheard by Eve who is eavesdropping over a degraded channel. Systems for achieving that physical layer security often rely on an error correction code whose rate is below the Shannon capacity of Alice and Bob's channel, so Bob can reliably decode, but above Alice and Eve's, so Eve cannot reliably decode. For the finite block length regime, several metrics have been proposed to characterise information leakage. Here we assess a new metric, the success exponent, and demonstrate it can be operationalized through the use of Guessing Random Additive Noise Decoding (GRAND) to compromise the physical-layer security of any moderate length code. Success exponents are the natural beyond-capacity analogue of error exponents that characterise the probability that a maximum likelihood decoding is correct when the code-rate is above Shannon capacity, which is exponentially decaying in the code-length. Success exponents can be used to approximately evaluate the frequency with which Eve's decoding is correct in beyond-capacity channel conditions. Through the use of GRAND, we demonstrate that Eve can constrain her decoding procedure so that when she does identify a decoding, it is correct with high likelihood, significantly compromising Alice and Bob's communication by truthfully revealing a proportion of it. We provide general mathematical expressions for the determination of success exponents as well as for the evaluation of Eve's query number threshold, using the binary symmetric channel as a worked example. As GRAND algorithms are code-book agnostic and can decode any code structure, we provide empirical results for Random Linear Codes as exemplars. Simulation results demonstrate the practical possibility of compromising physical layer security.


翻译:在经典窃听模式中,爱丽丝希望与鲍勃可靠地进行沟通,而不会被正在窃听退化频道的Eve听到的Eve听到。实现物理层安全的系统往往依赖于一个错误校正代码,其速率低于Alice和Bob频道的香农能力,因此Bob可以可靠地解码,但不能在Alice和Eve频道上方进行解码,因此Eve无法可靠地解码。对于有限区块长度制度,已经提出了数度量来描述信息泄漏的特点。在这里,我们评估了一个新的度量,成功度度,并表明可以通过使用随机的Aditive Aditive Noise Dicoarding (GRAND) 来操作它。实现物理层安全性的系统,成功度是超出Chandal 值的自然比值的模拟,我们通过使用直径直径解的解算法,我们通过直径解的直径解的算法,可以提供直径的直径直径的解码,我们通过直径的直径的解的解的解算法路路路路径,我们可以通过直径的解的解的路径来测量的路径来测量, 。我们用直径直径直径直径解的解的直径解的解的解的解的直径解的解的算法路路路路路路路路路路路路路路,我们可以测量的路径,通过直路,通过直路路路路,通过直的解的解的解的算法,通过直路路路路路路路路路路路路路路路路路路,我们测量的路径来测量的路径,我们测量的路径,我们测量的路径,通过直的路径的解的解的轨的轨的轨的路径,通过直的路径,我们的根,我们的解的轨的解的轨的路径,可以测量的路径,可以测量,我们可以测量的根,通过直路,可以测量到直路,我们可以测量,通过直路,我们可以测量的直路,我们可以测量到直路,通过直路。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员