This paper provides a specification test for semiparametric models with nonparametrically generated regressors. Such variables are not observed by the researcher but are nonparametrically identified and estimable. Applications of the test include models with endogenous regressors identified by control functions, semiparametric sample selection models, or binary games with incomplete information. The statistic is built from the residuals of the semiparametric model. A novel wild bootstrap procedure is shown to provide valid critical values. We consider nonparametric estimators with an automatic bias correction that makes the test implementable without undersmoothing. In simulations the test exhibits good small sample performances, and an application to women's labor force participation decisions shows its implementation in a real data context.
翻译:本文为具有非对称生成的递减器的半对称模型提供了一个规格测试。这些变量没有被研究人员观察到,但无法被对称识别和估计。测试的应用包括由控制功能、半对称样本选择模型或信息不完整的二进制游戏确定的内生递减器模型。统计数据来自半对称模型的剩余部分。一个新的野靴陷阱程序显示提供了有效的关键值。我们考虑具有自动偏差校正的非对称估测器,使测试的偏差可以实施,而不会发生偏差。在模拟中,测试显示的样本性能很小,对女性劳动力参与决定的应用显示其在真实数据背景下的执行情况。