Query-focused summarization has been considered as an important extension for text summarization. It aims to generate a concise highlight for a given query. Different from text summarization, query-focused summarization has long been plagued by the problem of lacking high-quality large-scale datasets. In this paper, we investigate the idea that whether we can integrate and transfer the knowledge of text summarization and question answering to assist the few-shot learning in query-focused summarization. Here, we propose prefix-merging, a prefix-based pretraining strategy for few-shot learning in query-focused summarization. Drawn inspiration from prefix-tuning, we are allowed to integrate the task knowledge from text summarization and question answering into a properly designed prefix and apply the merged prefix to query-focused summarization. With only a small amount of trainable parameters, prefix-merging outperforms fine-tuning on query-focused summarization. We further discuss the influence of different prefix designs and propose a visualized explanation for how prefix-merging works.
翻译:以查询为焦点的总和被认为是文本总和的一个重要扩展。 它旨在为特定查询生成一个简明的亮点。 与文本总和不同, 以查询为焦点的总和长期以来一直受到缺少高质量大型数据集的问题困扰。 在本文中, 我们调查了这样一个想法, 即我们是否能够整合和转让文本总和和和答题知识, 以协助在以查询为焦点的简略组合中进行微小的学习。 在这里, 我们提出了一个基于前缀的预设培训战略, 用于在以查询为焦点的总和中进行微小的学习。 从前缀调中提取灵感, 我们获准将文本总和问题的任务知识纳入一个设计得当的前缀中, 并将合并的前缀用于以查询为焦点的简洁。 只有少量的可训练参数, 将精密的外形拼凑成精细调整 。 我们进一步讨论了不同前缀设计的影响, 并对前缀如何拼凑工作提出直观的解释 。