Answering complex queries on incomplete knowledge graphs is a challenging task where a model needs to answer complex logical queries in the presence of missing knowledge. Recently, Arakelyan et al. (2021); Minervini et al. (2022) showed that neural link predictors could also be used for answering complex queries: their Continuous Query Decomposition (CQD) method works by decomposing complex queries into atomic sub-queries, answers them using neural link predictors and aggregates their scores via t-norms for ranking the answers to each complex query. However, CQD does not handle negations and only uses the training signal from atomic training queries: neural link prediction scores are not calibrated to interact together via fuzzy logic t-norms during complex query answering. In this work, we propose to address this problem by training a parameter-efficient score adaptation model to re-calibrate neural link prediction scores: this new component is trained on complex queries by back-propagating through the complex query-answering process. Our method, CQD$^{A}$, produces significantly more accurate results than current state-of-the-art methods, improving from $34.4$ to $35.1$ Mean Reciprocal Rank values averaged across all datasets and query types while using $\leq 35\%$ of the available training query types. We further show that CQD$^{A}$ is data-efficient, achieving competitive results with only $1\%$ of the training data, and robust in out-of-domain evaluations.
翻译:回答不完整知识图表的复杂问题是一项艰巨的任务,模型需要以缺失知识的方式回答复杂的逻辑问题。最近,Arakelyan等人(2021年);Minervini等人(2022年)显示,神经链路预测器也可以用来回答复杂的问题:他们的连续查询分解(CQD)方法,将复杂的查询分解到原子子查询中,用神经链路预测器回答,通过t-norum 来对每个复杂查询的答案进行分数排序。然而,CQD不处理否定问题,而只使用原子培训查询中的培训信号:神经链路预测分数在复杂的查询中,不能通过模糊逻辑 tncnorm来校准。在这项工作中,我们建议通过将参数效率调校准调模型的调校准模型来解决这个问题,在复杂的查询过程中,通过对每个查询过程进行回调来进行复杂的查询。我们的方法,即CD$$(D$),只使用原子链接的预测分数,在目前数据类型中,用35美元(R_Q_R_xx)数据中,在目前的平均数据中,用最准确的数据类型中,用35数据显示所有数据类型的数据类型中,只有R_R_R_R_r_r_r_r_r_r_r_r_r_r_r_r_r_r_r_r_r_