We examine the problem of obtaining fair outcomes for individuals who choose to share optional information with machine-learned models and those who do not consent and keep their data undisclosed. We find that these non-consenting users receive significantly lower prediction outcomes than justified by their provided information alone. This observation gives rise to the overlooked problem of how to ensure that users, who protect their personal data, are not penalized. While statistical fairness notions focus on fair outcomes between advantaged and disadvantaged groups, these fairness notions fail to protect the non-consenting users. To address this problem, we formalize protection requirements for models which (i) allow users to benefit from sharing optional information and (ii) do not penalize them if they keep their data undisclosed. We offer the first solution to this problem by proposing the notion of Optional Feature Fairness (OFF), which we prove to be loss-optimal under our protection requirements (i) and (ii). To learn OFF-compliant models, we devise a model-agnostic data augmentation strategy with finite sample convergence guarantees. Finally, we extensively analyze OFF on a variety of challenging real-world tasks, models, and data sets with multiple optional features.


翻译:我们研究如何使选择与机器学习模型分享任择信息的个人和不同意分享其数据的个人获得公平结果的问题,我们发现,这些不同意的用户得到的预测结果大大低于仅以他们提供的信息为据的预测结果,这种观察造成了一个被忽视的问题,即如何确保保护其个人数据的用户不受处罚;虽然统计公平概念侧重于优劣群体之间的公平结果,但这些公平概念未能保护不同意的用户;为解决这一问题,我们正式确定了对以下模式的保护要求:(一) 使用户从分享任择信息中受益,以及(二) 如果不披露其数据,则不惩罚他们。我们提出“任择法公正”概念(OFF),这是第一个解决问题的办法,我们证明,根据我们的保护要求(一)和(二),这种概念是损失最佳的。为了了解符合FTO的模型,我们用有限的样本融合保证,设计了一个模式-不可否认的数据增强战略。最后,我们广泛分析了F对具有挑战性的现实任务、模式和具有多种任择特征的数据集的各种挑战性任务、模型和数据集。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月15日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员