Machine learning methods have been lately used to solve differential equations and dynamical systems. These approaches have been developed into a novel research field known as scientific machine learning in which techniques such as deep neural networks and statistical learning are applied to classical problems of applied mathematics. Because neural networks provide an approximation capability, computational parameterization through machine learning and optimization methods achieve noticeable performance when solving various partial differential equations (PDEs). In this paper, we develop a novel numerical algorithm that incorporates machine learning and artificial intelligence to solve PDEs. In particular, we propose an unsupervised machine learning algorithm based on the Legendre-Galerkin neural network to find an accurate approximation to the solution of different types of PDEs. The proposed neural network is applied to the general 1D and 2D PDEs as well as singularly perturbed PDEs that possess boundary layer behavior.
翻译:最近,机器学习方法被用于解决差异方程和动态系统。这些方法已经发展成为一个新型的研究领域,称为科学机器学习,其中深神经网络和统计学习等技术应用于应用数学的古老问题。由于神经网络提供近似能力,因此通过机器学习和优化方法计算参数在解决各种部分差异方程(PDEs)时能够取得显著的性能。在本文中,我们开发了一种新颖的数字算法,其中包括机器学习和人工智能,以解决PDEs问题。特别是,我们基于Tolorre-Galerkin神经网络提出了一种不受监督的机器学习算法,以找到不同类型PDEs解决方案的准确近似值。拟议的神经网络适用于通用的1D和2D PDEs,以及具有边界层行为的单断开的PDEs。