The idea of neural Ordinary Differential Equations (ODE) is to approximate the derivative of a function (data model) instead of the function itself. In residual networks, instead of having a discrete sequence of hidden layers, the derivative of the continuous dynamics of hidden state can be parameterized by an ODE. It has been shown that this type of neural network is able to produce the same results as an equivalent residual network for image classification. In this paper, we design a novel neural ODE for the semantic segmentation task. We start by a baseline network that consists of residual modules, then we use the modules to build our neural ODE network. We show that our neural ODE is able to achieve the state-of-the-art results using 57% less memory for training, 42% less memory for testing, and 68% less number of parameters. We evaluate our model on the Cityscapes, CamVid, LIP, and PASCAL-Context datasets.
翻译:神经普通差异等同( ODE) 的理念是将函数( 数据模型) 的衍生物比喻成一个函数( 数据模型), 而不是函数本身 。 在剩余网络中, 隐藏层的离散序列, 隐藏状态连续动态的衍生物可以由 ODE 参数化。 已经显示, 这种类型的神经网络能够产生与图像分类等同的剩余网络相同的结果 。 在本文中, 我们为语义分割任务设计了一个新的神经模型 。 我们从一个由剩余模块组成的基线网络开始, 然后我们用模块来构建我们的神经代码网络。 我们显示, 我们的神经代码能够用57%的内存来完成最新结果, 42%的内存用于培训, 42%的内存用于测试, 68%的参数较少。 我们评估了我们在市景、 CamVid、 LIP 和 PASAL- Cont set 的模型 。