We consider the problem of learning the latent community structure in a Multi-Layer Contextual Block Model introduced by Ma and Nandy (2021), where the average degree for each of the observed networks is of constant order and establish a sharp detection threshold for the community structure, above which detection is possible asymptotically, while below the threshold no procedure can perform better than random guessing. We further establish that the detection threshold coincides with the threshold for weak recovery of the common community structure using multiple correlated networks and co-variate matrices. Finally, we provide a quasi-polynomial time algorithm to estimate the latent communities in the recovery regime. Our results improve upon the results of Ma and Nandy (2021), which considered the diverging degree regime and recovers the results of Lu and Sen (2020) in the special case of a single network structure.
翻译:我们考虑了在Ma和Nandy(2021年)引入的多层背景块模型中学习潜在社区结构的问题,在这个模型中,每个观测到的网络的平均程度是恒定的,并为社区结构设定了一个尖锐的检测阈值,超过这一阈值是可能的,而低于这一阈值,没有任何程序能比随机猜测更好。我们进一步确定,检测阈值与利用多个相关网络和共同变量矩阵弱恢复共同社区结构的阈值相吻合。最后,我们提供了一种准极时间算法来估计恢复制度中的潜在社区。我们的成果在Ma和Nandy(2021年)的成果上有所改进,后者审议了不同程度制度,并在单一网络结构的特殊情况下恢复了Lu和Sen(2020年)的结果。