Understanding non-linear relationships among financial instruments has various applications in investment processes ranging from risk management, portfolio construction and trading strategies. Here, we focus on interconnectedness among stocks based on their correlation matrix which we represent as a network with the nodes representing individual stocks and the weighted links between pairs of nodes representing the corresponding pair-wise correlation coefficients. The traditional network science techniques, which are extensively utilized in financial literature, require handcrafted features such as centrality measures to understand such correlation networks. However, manually enlisting all such handcrafted features may quickly turn out to be a daunting task. Instead, we propose a new approach for studying nuances and relationships within the correlation network in an algorithmic way using a graph machine learning algorithm called Node2Vec. In particular, the algorithm compresses the network into a lower dimensional continuous space, called an embedding, where pairs of nodes that are identified as similar by the algorithm are placed closer to each other. By using log returns of S&P 500 stock data, we show that our proposed algorithm can learn such an embedding from its correlation network. We define various domain specific quantitative (and objective) and qualitative metrics that are inspired by metrics used in the field of Natural Language Processing (NLP) to evaluate the embeddings in order to identify the optimal one. Further, we discuss various applications of the embeddings in investment management.


翻译:金融工具之间的非线性关系在投资过程中有各种各样的应用,包括风险管理、证券组合建设和贸易战略等。在这里,我们注重股票之间的相互联系,基于它们的相互关系矩阵,我们作为网络代表的是代表单个股票的节点和代表对应对对对相相关系数的对结点之间的加权联系。传统的网络科学技术在金融文献中广泛使用,需要手工制作的特征,如理解这种关联网络的中心措施等。然而,人工获取所有这些手工制作的特征可能很快变成一项艰巨的任务。相反,我们建议采用一种新的方法,用算法方式研究相关网络内的细微和关系,使用名为 Node2Vec 的图表机学习算法。特别是,算法将网络压缩成一个较低维度的连续空间,称为嵌入,在其中,被算法确认相似的对节点的对等,彼此贴近。通过S&P 500存量数据的日志回报,我们提议的算算法可以从其相关网络中学习这种嵌入。我们用算法的方式界定了不同领域的具体量化(和目的)和定性指标应用,我们用到最优化的里程的内压,我们用来对各种的实地评估。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
67+阅读 · 2022年9月7日
Arxiv
0+阅读 · 2022年9月6日
Arxiv
56+阅读 · 2021年5月3日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
35+阅读 · 2020年1月2日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员