We consider limits of certain measures supported on lattice points in lattice polyhedra defined as the intersection of half-spaces $\{m\in\mathbb{R}^n|\langle v_i,x\rangle+a_i \geq 0\}$, where $\sum_i v_i = 0$. The measures are densities associated to lattice random variables obtained by restriction of multinomial random variables. We find the limiting Gaussian distributions explicitly.
翻译:我们考虑由半空间$\{m\in\mathbb{R}^n|\langle v_i,x\rangle+a_i \geq 0\}$的交集定义的晶格多面体分支持的某些度量的极限。其中,$v_i$满足$\sum_i v_i = 0$。这些度量是与受限制的多项式随机变量相对应的密度。我们明确地找到了具体的极限高斯分布。