项目名称: 函数逼近论的一些极值问题与多元线性问题的可处理性
项目编号: No.11471043
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 刘永平
作者单位: 北京师范大学
项目金额: 65万元
中文摘要: 主要考虑定义在一些紧集和非紧集(包括一些流形)上的函数空间(包括加权函数空间)中函数集的函数逼近论中几个线性、非线性极值问题以及一些计算复杂性理论问题,内容主要包括最佳逼近、宽度理论、限制逼近、相对宽度、m-项逼近等函数逼近论中极值理论的基本问题,以及信息基的最优恢复、最优算法和信息基计算复杂性理论中的多元线性可处理性等计算数学中的基本问题. 预计所得结果将不但丰富函数逼近理论,且为计算数学提供理论基础,为一些应用学科提供数学方法.
中文关键词: 函数逼近;极值问题;最优恢复;信息基复杂性;线性问题的可处理性
英文摘要: Mainly consider several extreme value problems of the linearity and the non-linear function approximation theory of the smooth function spaces defined on some compact sets and the non-compact sets (including some manifolds) as well as some optimal algorithm theory's question, the contents mainly includes best approximation, the width theory, the relative width, the restricted approximation, m-term approximation, and so on some basic questions in the function approximation extreme value theory, as well as information-based optimal recovery, optimal algrithm, tractability of multivarite linear problems in information-based computational complexity, and so on some basic questions in computational mathematics. We predict that the obtained results enrich the approximation theory of functions, also will provide some theoretical bases for the computational mathematics, and provide the mathematical methods for some applied sciences.
英文关键词: Approximation of functions;extreme value problem;optimal recovery;information base complexity;tractability of linear problem