This work presents a number of techniques to improve the ability to create magnetic field maps on a UAV which can be used to quickly and reliably gather magnetic field observations at multiple altitudes in a workspace. Unfortunately, the electronics on the UAV can introduce their own magnetic fields, distorting the resultant magnetic field map. We show methods of reducing and working with UAV-induced noise to better enable magnetic fields as a sensing modality for indoor navigation. First, some gains in our flight controller create high-frequency motor commands that introduce large noise in the measured magnetic field. Next, we implement a common noise reduction method of distancing the magnetometer from other components on our UAV. Finally, we introduce what we call a compromise GPR (Gaussian process regression) map that can be trained on multiple flight tests to learn any flight-by-flight variations between UAV observation tests. We investigate the spatial density of observations used to train a GPR map then use the compromise map to define a consistency test that can indicate whether or not the magnetometer data and corresponding GPR map are appropriate to use for state estimation. The interventions we introduce in this work facilitate indoor position localization of a UAV whose estimates we found to be quite sensitive to noise generated by the UAV.
翻译:这项工作提出了一些提高在工作空间多个高度迅速可靠地收集磁场观测的无人驾驶航空器磁场地图的能力的技术。不幸的是,无人驾驶航空器上的电子可以引入自己的磁场,扭曲由此产生的磁场地图。我们展示了减少无人驾驶航空器引发的噪音并使用无人驾驶航空器引发的噪音的方法,以便更好地使磁场成为室内导航的遥感模式。首先,我们的飞行控制器中的一些增益产生了高频运动指令,在测量的磁场中引入了大噪声。接着,我们采用了一种共同的减少噪音的方法,将磁强计与我们无人驾驶航空器上的其他部件相隔开来。最后,我们引入了一种我们称之为折中GPR(Gaussuan进程回归)的地图,可以接受多次飞行测试的培训,以了解无人驾驶航空器观测测试之间的任何飞行变化。我们调查用于培训GPR地图的观测空间密度,然后使用折中地图来确定一致性测试,可以表明磁强计数据和相应的GPR地图是否适合用于国家估算。我们在此工作中引入的干预措施有助于将UAV的敏感度定位。