The concepts of sparsity, and regularised estimation, have proven useful in many high-dimensional statistical applications. Dynamic factor models (DFMs) provide a parsimonious approach to modelling high-dimensional time series, however, it is often hard to interpret the meaning of the latent factors. This paper formally introduces a class of sparse DFMs whereby the loading matrices are constrained to have few non-zero entries, thus increasing interpretability of factors. We present a regularised M-estimator for the model parameters, and construct an efficient expectation maximisation algorithm to enable estimation. Synthetic experiments demonstrate consistency in terms of estimating the loading structure, and superior predictive performance where a low-rank factor structure may be appropriate. The utility of the method is further illustrated in an application forecasting electricity consumption across a large set of smart meters.


翻译:稀疏性和正则化估计的概念已被证明在许多高维统计应用中非常有用。 动态因子模型(DFMs)提供了一种简洁的方法来建模高维时间序列,然而,通常很难解释潜在因子的含义。本文正式介绍了一类稀疏的DFMs,其中加载矩阵被限制为具有少量的非零条目,从而增加因子的解释性。我们提出了一种正则化M估计量来估计模型参数,并构建了一个高效的期望最大化算法来实现估计。合成实验显示了在估计加载结构方面的一致性,以及在可能适合低秩因子结构的情况下具有更好的预测性能。该方法的实用性在预测大量智能电表的电力消耗方面得到进一步说明。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
69+阅读 · 2022年9月30日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
46+阅读 · 2020年10月5日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
69+阅读 · 2022年9月30日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
46+阅读 · 2020年10月5日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员