In this paper, we consider the problem of covering a plane region with unit discs. We present an improved upper bound and the first nontrivial lower bound on the number of discs needed for such a covering, depending on the area and perimeter of the region. We provide algorithms for efficient covering of convex polygonal regions using unit discs. We show that the computational complexity of the algorithms is pseudo-polynomial in the size of the input and the output. We also show that these algorithms provide a constant factor approximation of the optimal covering of the region.
翻译:在本文中,我们考虑用单盘覆盖一个平面区域的问题。我们根据区域面积和周边情况,对这种覆盖所需的圆盘数量提出改进的上下限和第一个非边际下限。我们提供算法,以便使用单盘有效覆盖 convex多边形区域。我们显示算法的计算复杂性在输入和输出的大小方面是伪极化的。我们还显示,这些算法提供了该区域最佳覆盖的常数系数近似值。