We present a modular algorithm for the computational co-design of legged robots and dynamic maneuvers. Current state-of-the-art approaches are based on random sampling or concurrent optimization. We propose a bilevel optimization approach that exploits the derivatives of the motion planning sub-problem (the inner level). Our approach allows for the use of any differentiable motion planner in the inner level, similarly to sampling methods, but also allows for an upper level that captures arbitrary design constraints and costs. Our approach can optimize the robot's morphology and actuator parameters while considering its full dynamics, joint limits and physical constraints such as friction cones. We demonstrate these capabilities by studying jumping and trotting gaits and verify our results in a physics simulator, showing it successfully minimizes the energy used.
翻译:我们为计算共设计断腿机器人和动态操控提供了模块式算法。 目前最先进的方法基于随机抽样或同时优化。 我们提出了双级优化方法,利用运动规划子问题(内部层面)的衍生物。 我们的方法允许在内部使用任何不同的运动规划师,类似于取样方法,但也允许有一个能捕捉任意设计制约和成本的上层。 我们的方法可以优化机器人的形态和动画参数,同时考虑其充分动态、联合限制和物理限制,例如摩擦锥体。 我们通过研究跳跃和跳动仪来展示这些能力,并在物理模拟器中验证我们的结果,显示它成功地将所使用的能量降到最低。