In continuous action domains, standard deep reinforcement learning algorithms like DDPG suffer from inefficient exploration when facing sparse or deceptive reward problems. Conversely, evolutionary and developmental methods focusing on exploration like Novelty Search, Quality-Diversity or Goal Exploration Processes explore more robustly but are less efficient at fine-tuning policies using gradient descent. In this paper, we present the GEP-PG approach, taking the best of both worlds by sequentially combining a Goal Exploration Process and two variants of DDPG. We study the learning performance of these components and their combination on a low dimensional deceptive reward problem and on the larger Half-Cheetah benchmark. We show that DDPG fails on the former and that GEP-PG improves over the best DDPG variant in both environments. Supplementary videos and discussion can be found at http://frama.link/gep_pg, the code at http://github.com/flowersteam/geppg.


翻译:在连续的行动领域,像DDPG这样的标准的深层强化学习算法在面临稀少或欺骗性的奖励问题时受到效率低下的探索。相反,侧重于新发现搜索、质量多样性或目标探索过程等探索的进化和开发方法更强有力地探索,但在使用梯度下降的微调政策方面效率较低。在本文中,我们介绍了GEP-PG方法,将目标探索进程与DDPG的两个变体相接轨,从而在两个世界中取得最佳效果。我们研究了这些组成部分的学习表现及其在低维度欺骗性奖励问题和较大的半切塔基准上的结合。我们表明,DDPG在前者上失败,GEP-PG在两种环境中都比最佳DDPG变体改进了。补充视频和讨论见http://frama.link/gep_pg,代码见http://githhub.com/flowsteam/geppg。

4
下载
关闭预览

相关内容

深度强化学习 (DRL) 是一种使用深度学习技术扩展传统强化学习方法的一种机器学习方法。 传统强化学习方法的主要任务是使得主体根据从环境中获得的奖赏能够学习到最大化奖赏的行为。然而,传统无模型强化学习方法需要使用函数逼近技术使得主体能够学习出值函数或者策略。在这种情况下,深度学习强大的函数逼近能力自然成为了替代人工指定特征的最好手段并为性能更好的端到端学习的实现提供了可能。
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年12月26日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
7+阅读 · 2018年12月26日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员