Collaborative SLAM is at the core of perception in multi-robot systems as it enables the co-localization of the team of robots in a common reference frame, which is of vital importance for any coordination amongst them. The paradigm of a centralized architecture is well established, with the robots (i.e. agents) running Visual-Inertial Odometry (VIO) onboard while communicating relevant data, such as e.g. Keyframes (KFs), to a central back-end (i.e. server), which then merges and optimizes the joint maps of the agents. While these frameworks have proven to be successful, their capability and performance are highly dependent on the choice of the VIO front-end, thus limiting their flexibility. In this work, we present COVINS-G, a generalized back-end building upon the COVINS framework, enabling the compatibility of the server-back-end with any arbitrary VIO front-end, including, for example, off-the-shelf cameras with odometry capabilities, such as the Realsense T265. The COVINS-G back-end deploys a multi-camera relative pose estimation algorithm for computing the loop-closure constraints allowing the system to work purely on 2D image data. In the experimental evaluation, we show on-par accuracy with state-of-the-art multi-session and collaborative SLAM systems, while demonstrating the flexibility and generality of our approach by employing different front-ends onboard collaborating agents within the same mission. The COVINS-G codebase along with a generalized front-end wrapper to allow any existing VIO front-end to be readily used in combination with the proposed collaborative back-end is open-sourced. Video: https://youtu.be/FoJfXCfaYDw


翻译:协同 SLAM 是多机器人系统感知的核心,因为它可以使机器人团队在一个共同的参考帧中共同定位,这对它们之间的任何协调都非常重要。集中式架构范例已经得到了很好的建立,机器人(即代理)在设备上运行视觉惯性测量(VIO),同时向中央后端(即服务器)通信相关数据,例如关键帧(KFs),然后合并并优化代理的联合地图。虽然这些框架已被证明是成功的,但它们的能力和性能高度依赖于VIO前端的选择,从而限制了它们的灵活性。在这项工作中,我们提出了COVINS-G,这是一种通用的后端,基于COVINS框架构建,使服务器后端与任何任意的VIO前端兼容,包括例如具有测距能力的现成相机(如Realsense T265)。COVINS-G后端使用多相机相对姿态估计算法,用于计算闭环约束,从而使系统能够纯粹地在2D图像数据上工作。在实验评估中,我们展示了与最先进的多会话协同SLAM系统相当的准确性,同时通过在同一任务中在协作代理上使用不同的前端,展示了我们方法的灵活性和通用性。COVINS-G代码库以及通用前端包装器,以允许任何现有的VIO前端与所提出的协同后端轻松结合使用,已经开源。视频:https://youtu.be/FoJfXCfaYDw

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
【AAAI 2022】跨模态目标跟踪: 模态感知表示和统一基准
专知会员服务
42+阅读 · 2022年1月6日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
专知会员服务
86+阅读 · 2019年12月13日
【泡泡图灵智库】协同视觉-惯性SLAM
泡泡机器人SLAM
29+阅读 · 2019年9月6日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月7日
Physics-Based Acoustic Holograms
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关VIP内容
【AAAI 2022】跨模态目标跟踪: 模态感知表示和统一基准
专知会员服务
42+阅读 · 2022年1月6日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
专知会员服务
86+阅读 · 2019年12月13日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员