In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms.


翻译:近年来,在设计和分析完全动态算法方面取得了重大进展,然而,从实际的角度来看,这些理论结果很少受到重视,很少算法在真实的数据集上得到实施和测试,其实际潜力远非人们所理解。 在这里,我们提供了一份快速参考指南,说明在完全动态的图表算法领域最近的工程和理论结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员