Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual's face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an "easy-to-hard" scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains.
翻译:在不受限制的环境中,由于在照明、感知质量、运动模糊等方面存在差异,在不受限制的环境中对面的识别具有挑战性。 一个人的面貌在造成火车(源)数据与不同的测试(目标)数据之间差距的不同条件下可能有很大差异。 域间差距可能导致直接知识从源到目标转移的性能水平下降。 尽管对具体领域的数据进行微调可以是一种有效的解决办法,但收集和批注所有领域的数据的费用非常昂贵。 为此,我们提议了一个自我监督的域学习计划(SSDL),用于培训从无标签数据中提取的三胞胎。 有效歧视学习的一个关键因素是选择信息化的三胞胎。 在最有信心的预测的基础上,我们遵循一种“容易硬化”的替代三胞式采矿和自学计划。 对四个不同基准的全面实验显示, SSDL在不同的领域非常普及。