In this work we propose a stochastic primal-dual three-operator splitting algorithm (TOS-SPDHG) for solving a class of convex three-composite optimization problems. Our proposed scheme is a direct three-operator splitting extension of the SPDHG algorithm [Chambolle et al. 2018]. We provide theoretical convergence analysis showing ergodic $O(1/K)$ convergence rate, and demonstrate the effectiveness of our approach in imaging inverse problems. Moreover, we further propose TOS-SPDHG-RED and TOS-SPDHG-eRED which utilizes the regularization-by-denoising (RED) framework to leverage pretrained deep denoising networks as priors.
翻译:暂无翻译