Numerical analysis for the stochastic Stokes/Navier-Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the existing error estimates of finite element methods for the stochastic equations all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The purpose of this article is to establish the strong convergence of $O(\tau^{1/2}+ h^2)$ and $O(\tau^{1/2}+ h)$ in the $L^2$ norm for the inf-sup stable velocity-pressure finite element approximations, where $\tau$ and $h$ denote the temporal stepsize and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.
翻译:尽管对相应的确定性方程做了很好的工作,但是对Stochacist Stokes/Navier-Stokes方程的数值分析仍然具有挑战性,特别是,目前对Stochacistic方程的有限元素方法的误差估计,都因空间离散化的顺序减少而受到影响。这些完全离散的方程式的最佳趋同结果,只是时间和空间第一顺序的半序,从传统意义上讲,这在空间上不是最理想的。本条款的目的是确定美元(Tau ⁇ 1/2 ⁇ 2 ⁇ h ⁇ 2)和美元($(Tau ⁇ 1/2 ⁇ 2 ⁇ 2 ⁇ h)的高度趋同,这与数字实验一致。分析基于完全离散的稳定的速压定定质元素近似值,即$\tau美元和$hh$分别表示时间级步骤和空间中位大小。误差估计是本条所考虑的空间离异化的最佳顺序(与MINI元素),并与数字实验一致。分析以完全离散的半层和新技术为基础。