We derive a novel lattice Boltzmann scheme, which uses a pressure correction forcing term for approximating the volume averaged Navier-Stokes equations (VANSE) in up to three dimensions. With a new definition of the zeroth moment of the Lattice Boltzmann equation, spatially and temporally varying local volume fractions are taken into account. A Chapman-Enskog analysis, respecting the variations in local volume, formally proves the consistency towards the VANSE limit up to higher order terms. The numerical validation of the scheme via steady state and non-stationary examples approves the second order convergence with respect to velocity and pressure. The here proposed lattice Boltzmann method is the first to correctly recover the pressure with second order for space-time varying volume fractions.
翻译:我们得出了一个新颖的 lattice Boltzmann 计划,该计划使用压力校正强制术语,以近似平均数值纳维-斯托克斯方程式(VANSE)的三个维度。根据对Lattice Boltzmann 方程式零点点的新定义,考虑到空间和时间上不同的本地量分数。Capman-Enskog 研究当地体积的变化,正式证明对VANSE 限制到更高级条件的一致性。通过稳定状态和非静止范例对计划进行数字验证,批准了速度和压力的第二顺序趋同。这里提出的Lattice Boltzmann 方法是第一个正确恢复压力的第一个方法,第二个顺序是空间时间变化的体积分数。