In this paper, we present a nonparametric estimation procedure for the multivariate Hawkes point process. The timeline is cut into bins and -- for each component process -- the number of points in each bin is counted. The distribution of the resulting "bin-count sequences" can be approximated by an integer-valued autoregressive model known as the (multivariate) INAR($p$) model. We represent the INAR($p$) model as a standard vector-valued linear autoregressive time series with white-noise innovations (VAR($p$)). We establish consistency and asymptotic normality for conditional least-squares estimation of the VAR($p$), respectively, the INAR($p$) model. After an appropriate scaling, these time series estimates yield estimates for the underlying multivariate Hawkes process as well as formulas for their asymptotic distribution. All results are presented in such a way that computer implementation, e.g., in R, is straightforward. Simulation studies confirm the effectiveness of our estimation procedure. Finally, we present a data example where the method is applied to bivariate event-streams in financial limit-order-book data. We fit a bivariate Hawkes model on the joint process of limit and market order arrivals. The analysis exhibits a remarkably asymmetric relation between the two component processes: incoming market orders excite the limit order flow heavily whereas the market order flow is hardly affected by incoming limit orders.
翻译:在本文中, 我们为多变量 hawkes 点进程提出了一个非参数估算程序。 时间线将切入垃圾桶, 并且 -- 在每个组件过程中 -- 计算每个垃圾桶的点数。 由此得出的“ bin- 计序” 的分布可以通过一个整数值的自动递增模型( 多变量) INAR( $p$) 来估计。 我们将 INAR( $ p$) 模型作为标准矢量估值的线性自动递增时间序列, 带有白噪音创新( VAR( $ p$ ) 。 我们为VAR( $$ 美元) 的有条件最小比例估算分别建立一致性和无损正常性。 INAR( $ p$) 模型的分布可以被一个整数值的自动递增模式( 多变量) IMAR( $ p$ p$) 模型) 。 我们代表所有结果的表述方式是计算机实施, 例如 R 的递增 。 模拟研究证实了我们估算程序的有效性 VAR( $Pal- imal mailate) rideal a bradeal develop roder sess the the coal developmental developmental be the the coal developmental developmental developmental sal.