Learning causal relationships from empirical observations is a central task in scientific research. A common method is to employ structural causal models that postulate noisy functional relations among a set of interacting variables. To ensure unique identifiability of causal directions, researchers consider restricted subclasses of structural causal models. Post-nonlinear (PNL) causal models constitute one of the most flexible options for such restricted subclasses, containing in particular the popular additive noise models as a further subclass. However, learning PNL models is not well studied beyond the bivariate case. The existing methods learn non-linear functional relations by minimizing residual dependencies and subsequently test independence from residuals to determine causal orientations. However, these methods can be prone to overfitting and, thus, difficult to tune appropriately in practice. As an alternative, we propose a new approach for PNL causal discovery that uses rank-based methods to estimate the functional parameters. This new approach exploits natural invariances of PNL models and disentangles the estimation of the non-linear functions from the independence tests used to find causal orientations. We prove consistency of our method and validate our results in numerical experiments.
翻译:从实证观测中学习因果关系是科学研究的一项核心任务。一个共同的方法是采用结构因果模式,假设一组互动变量之间的烦琐功能关系;为确保因果方向的独特性,研究人员考虑结构因果模式的限制性亚类。非线性(PNL)因果模型是这类限制性亚类的最灵活选项之一,其中特别包括流行添加噪声模型,将其作为另一个子类。但是,学习PNL模型除了两极分立案例之外,还没有得到很好的研究。现有方法通过尽量减少剩余依赖性,并随后测试剩余物的独立性,来学习非线性功能关系,以确定因果方向。然而,这些方法可能容易过大,因此难以在实际中适当调适。作为一种替代办法,我们提出了一种新办法,用于PNL因果发现,即使用按等级划分的方法来估计功能参数。这种新办法利用了PNL模型的自然变异性,并混淆了从独立测试中得出的非线性功能的估算,以找出因果取向。我们证明我们的方法的一致性,并验证我们在数字实验中得出结果。</s>