For general large-scale optimization problems compact representations exist in which recursive quasi-Newton update formulas are represented as compact matrix factorizations. For problems in which the objective function contains additional structure, so-called structured quasi-Newton methods exploit available second-derivative information and approximate unavailable second derivatives. This article develops the compact representations of two structured Broyden-Fletcher-Goldfarb-Shanno update formulas. The compact representations enable efficient limited memory and initialization strategies. Two limited memory line search algorithms are described and tested on a collection of problems, including a real world large scale imaging application.
翻译:对于一般的大规模优化问题,存在契约表示,循环的准牛顿更新公式作为压缩矩阵因子表示;对于目标功能包含额外结构的问题,所谓的结构化准牛顿方法利用现有的二级衍生信息和近似无的第二衍生物;本条发展了两个结构化的布洛伊登-弗莱特-戈尔德法尔-沙诺更新公式的契约表示;契约表示使有效的有限记忆和初始化战略得以实现;两种有限的记忆线搜索算法在一系列问题中被描述和测试,包括真正的世界大规模成像应用。