Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in its structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. In our paper, we introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function, while remaining completely differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.
翻译:直接的环形图(DAGs)编码了有关其结构结构中特定分布的大量信息。然而,计算这些结构所需要的信息时,在变量数量上,计算这些结构通常具有超穷度,因为推论要求对潜在结构的组合大空间进行扫描。也就是说,直到最近的进展使得有可能使用不同的衡量标准搜索该空间,从而大大减少了搜索时间。虽然这一技术 -- -- 名为O注ARS -- -- 在DAG-发现中被广泛视为一项重要的工作,但它承认了一种重要的属性,有利于不同的可变性:可迁移性。为了可移动性,一个数据集中发现的结构必须适用于同一领域的另一个数据集。在我们的论文中,我们引入了D-Struct,通过新的结构和损失功能恢复了所发现结构中的可移动性,同时保持了完全不同的功能。由于D-Struct仍然可以不同,我们的方法很容易被应用于现有的可变结构,正如以前与NONARS一样。在我们的实验中,我们用不同结构的边缘对数字和结构的距离进行实验性验证。