Graphical structures estimated by causal learning algorithms from time series data can provide highly misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data. Although this problem has been recently recognized, practitioners have limited resources to respond to it, and so must continue using models that they know are likely misleading. Existing methods either (a) require that the difference between causal and measurement timescales is known; or (b) can handle only very small number of random variables when the timescale difference is unknown; or (c) apply to only pairs of variables, though with fewer assumptions about prior knowledge; or (d) return impractically too many solutions. This paper addresses all four challenges. We combine constraint programming with both theoretical insights into the problem structure and prior information about admissible causal interactions. The resulting system provides a practical approach that scales to significantly larger sets (>100) of random variables, does not require precise knowledge of the timescale difference, supports edge misidentification and parametric connection strengths, and can provide the optimum choice among many possible solutions. The cumulative impact of these improvements is gain of multiple orders of magnitude in speed and informativeness.


翻译:由时间序列数据的因果学习算法估计的图形结构可以提供极有误导性的因果关系信息,如果生成过程的因果时间尺度不能与数据的计量时间尺度相匹配的话。虽然这个问题最近已经得到确认,但实践者应对这一问题的资源有限,因此必须继续使用他们知道可能误导的模型。现有的方法有:(a) 要求了解因果和计量时间尺度之间的差异;或(b) 在时间尺度差异不明的情况下,只能处理极小数量的随机变量;或(c) 仅适用于对变量的对齐,尽管对先前知识的假设较少;或(d) 不切实际地返回太多的解决办法。本文述及所有四项挑战。我们把制约程序与对问题结构的理论洞察和关于可受理因果互动的先前信息结合起来。由此产生的系统提供了一种实用的方法,即从规模到大得多的数组( > 100)随机变量,并不要求准确了解时间尺度差异,支持边缘的辨别和准连接强度,并且可以提供许多可能的解决办法的最佳选择。这些改进的累积影响是速度和了解程度的多个数量级。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员