We establish Maxwell compactness results for the Discrete De Rham (DDR) polytopal complex: sequences in this polytopal complex with bounded discrete $\boldsymbol{H}(\mathbf{curl})$ (resp. discrete $\boldsymbol{H}(\mathrm{div})$) norm and orthogonal to discrete gradients (resp. discrete curls) have $L^2$-relatively compact potential reconstructions. The proof of these results hinges on the design of novel quasi-interpolators, that map the minimal-regularity de Rham spaces onto the discrete DDR spaces and form a commuting diagram. A full set of (primal and adjoint) consistency properties is established for these quasi-interpolators, which paves the way to convergence proofs, under minimal-regularity assumptions, of DDR schemes for partial differential equations based on the de Rham complex. Our analysis is performed with generic mixed boundary conditions, also covering the cases of no boundary conditions or fully homogeneous boundary conditions, and leverages recently introduced liftings from the DDR complex to the continuous de Rham complex.
翻译:本文针对离散德拉姆(DDR)多面体复形建立了麦克斯韦紧致性结果:该多面体复形中具有有界离散$\boldsymbol{H}(\mathbf{curl})$(相应地,离散$\boldsymbol{H}(\mathrm{div})$)范数且与离散梯度(相应地,离散旋度)正交的序列,其势重构具有$L^2$相对紧性。这些结果的证明依赖于新设计的拟插值算子,这些算子将最小正则性德拉姆空间映射到离散DDR空间,并构成交换图。我们为这些拟插值算子建立了一套完整的(原始及伴随)相容性性质,这为基于德拉姆复形的DDR偏微分方程格式在最小正则性假设下的收敛性证明铺平了道路。我们的分析采用通用的混合边界条件进行,同时涵盖无边界条件或完全齐次边界条件的情形,并利用了近期提出的从DDR复形到连续德拉姆复形的提升算子。