A polynomial indicator function of designs is first introduced by Fontana {\it et al}. (2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of 2x2x2x2x3 designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of 2x2x2x2x3 designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of 2x2x2x2x3 designs with strength 2. We show there are 35200 orthogonal half fractions of 2x2x2x2x3 designs with strength 2, classified into 63 equivalent classes.


翻译:Fontana {it et al} (2000年) 首次引入了设计中的多元系数指标函数 。 它们给出了两个级别案例的指数函数结构, 特别是与设计的正弦化关系 。 这些结果由 Aoki (2019年) 对一般多级案例的 Aoki (2019年) 普遍化。 作为这些结果的应用, 我们可以用计算代数软件来计算所有具有特定大小和正弦化的正弦分数分数设计。 例如, Aoki (2019年) 对具有强度3的2x2x2x2x2x3 设计的正弦化分数进行了分类, 以简单的变数消除为推算。 然而, 这种天性方法的计算可行性取决于问题大小。 事实上, 据报告, 具有强度2x2x2x2x2x2x3 的正弦化分数设计无法在Aoki (2019年) 进行。 在本文中, 使用基本解剖化理论, 我们用2x2xxxx 2x 的正等值设计进行分类分类和2 。 我们显示, 2x 2x 2x 2 的分数2 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员