We introduce a general non-parametric independence test between right-censored survival times and covariates, which may be multivariate. Our test statistic has a dual interpretation, first in terms of the supremum of a potentially infinite collection of weight-indexed log-rank tests, with weight functions belonging to a reproducing kernel Hilbert space (RKHS) of functions; and second, as the norm of the difference of embeddings of certain finite measures into the RKHS, similar to the Hilbert-Schmidt Independence Criterion (HSIC) test-statistic. We study the asymptotic properties of the test, finding sufficient conditions to ensure our test correctly rejects the null hypothesis under any alternative. The test statistic can be computed straightforwardly, and the rejection threshold is obtained via an asymptotically consistent Wild Bootstrap procedure. Extensive investigations on both simulated and real data suggest that our testing procedure generally performs better than competing approaches in detecting complex non-linear dependence.
翻译:我们引入了一种一般的非参数独立测试,这种测试在右检查的存活时间和共变之间可能是多变量的。 我们的测试统计数据有双重解释,首先是对可能无限的收集重指数日志测试的精髓进行双重解释,其重量函数属于复制的Hilbert核心空间(RKHS)的功能;其次,作为将某些有限措施嵌入RKHS的标准差异,类似于Hilbert-Schmidt独立标准(HSIC)的测试统计。我们研究了测试的无症状特性,找到足够的条件确保测试正确拒绝任何替代的无效假设。测试数据可以直接计算,拒绝阈值是通过一个无症状的一致的野生靴陷阱程序获得的。对模拟和真实数据进行的广泛调查表明,在发现复杂的非线性依赖性时,我们的测试程序一般比相互竞争的方法要好。