In the immersed boundary (IB) approach to fluid-structure interaction modeling, the coupling between the fluid and structure variables is mediated using a regularized version of Dirac delta function. In the IB literature, the regularized delta functions, also referred to IB kernel functions, are either derived analytically from a set of postulates or computed numerically using the moving least squares (MLS) approach. Whereas the analytical derivations typically assume a regular Cartesian grid, the MLS method is a meshless technique that can be used to generate kernel functions on complex domains and unstructured meshes. In this note we take a viewpoint that IB kernel generation, either analytically or via MLS, is a constrained quadratic minimization problem. The extremization of a constrained quadratic function is a broader concept than kernel generation, and there are well-established numerical optimization techniques to solve this problem. For example, we show that the constrained quadratic minimization technique can be used to generate one-sided (anisotropic) IB kernels and/or to bound their values.


翻译:在对流体结构互动建模的淡化边界(IB)方法中,流体和结构变量之间的混合利用一个正规版本的Dirac delta函数进行介介质。在 IB 文献中,正规化的三角形函数,也指 IB 内核函数,或者从一组假设中分析衍生出来,或者使用移动最小方(MLS)法进行数字计算。虽然分析衍生方法通常假定一种正常的碳酸盐格,但MLS 方法是一种无线技术,可用于在复杂域和无结构的meshes 上生成内核函数。在本说明中,我们认为,IB 内核生成,无论是分析性的还是通过 MLS,都是一个受限的二次最小化问题。受限的二次函数的极限比内核生成更为广泛,而且有公认的数字优化技术来解决这个问题。例如,我们表明,受限的二次最小化技术可以用来产生单面(氮基) IB内核和/或捆绑定的数值。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员