By the asymptotic oracle property, non-convex penalties represented by minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) have attracted much attentions in high-dimensional data analysis, and have been widely used in signal processing, image restoration, matrix estimation, etc. However, in view of their non-convex and non-smooth characteristics, they are computationally challenging. Almost all existing algorithms converge locally, and the proper selection of initial values is crucial. Therefore, in actual operation, they often combine a warm-starting technique to meet the rigid requirement that the initial value must be sufficiently close to the optimal solution of the corresponding problem. In this paper, based on the DC (difference of convex functions) property of MCP and SCAD penalties, we aim to design a global two-stage algorithm for the high-dimensional least squares linear regression problems. A key idea for making the proposed algorithm to be efficient is to use the primal dual active set with continuation (PDASC) method, which is equivalent to the semi-smooth Newton (SSN) method, to solve the corresponding sub-problems. Theoretically, we not only prove the global convergence of the proposed algorithm, but also verify that the generated iterative sequence converges to a d-stationary point. In terms of computational performance, the abundant research of simulation and real data show that the algorithm in this paper is superior to the latest SSN method and the classic coordinate descent (CD) algorithm for solving non-convex penalized high-dimensional linear regression problems.


翻译:以非隐性或触角属性为代表的非隐性惩罚,由迷你马克思二次曲线罚款(MCP)和平稳剪切绝对偏差(SCAD)代表的非隐性惩罚在高维数据分析中引起了许多注意,并被广泛用于信号处理、图像恢复、矩阵估计等。然而,鉴于其非隐性和非显性特性,这些惩罚在计算上具有挑战性。几乎所有现有的算法都聚集在本地,而正确选择初始值至关重要。因此,在实际操作中,它们往往结合一种热启动技术,以满足僵硬的要求,即初始值必须足够接近相应问题的最佳解决方案。在本文中,基于DC( convex函数的差异)、 MCP 和 SCAD 刑罚的属性被广泛用于信号处理。 然而,几乎所有现有的算法都是使拟议算法具有效率的原始双向主动(PDASC) 方法,这相当于对牛顿的精度快速递增性递增性递增性(SSN) 方法, 也就是我们所拟的极性递增性排序。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
中国无线经济白皮书,49页pdf
专知会员服务
14+阅读 · 2021年10月21日
专知会员服务
50+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员