We give an $\widetilde{O}({m^{3/2 - 1/762} \log (U+W))}$ time algorithm for minimum cost flow with capacities bounded by $U$ and costs bounded by $W$. For sparse graphs with general capacities, this is the first algorithm to improve over the $\widetilde{O}({m^{3/2} \log^{O(1)} (U+W)})$ running time obtained by an appropriate instantiation of an interior point method [Daitch-Spielman, 2008]. Our approach is extending the framework put forth in [Gao-Liu-Peng, 2021] for computing the maximum flow in graphs with large capacities and, in particular, demonstrates how to reduce the problem of computing an electrical flow with general demands to the same problem on a sublinear-sized set of vertices -- even if the demand is supported on the entire graph. Along the way, we develop new machinery to assess the importance of the graph's edges at each phase of the interior point method optimization process. This capability relies on establishing a new connections between the electrical flows arising inside that optimization process and vertex distances in the corresponding effective resistance metric.


翻译:我们给出了美元=3/2-1/762}({{m ⁇ 3/2-1/762}}}({m ⁇ 3/2-1/762}\log(U+W)})美元=最小成本流量的时间算法,其能力受美元约束,成本受美元约束。对于具有一般能力的稀有图表,这是第一个在全局{O}{{{{{{{{{m ⁇ 3/2}}({m ⁇ 3/2}\log*O(1)}(U+W})美元=运行时间,通过对内部点方法[Daitch-Spielman,2008]的适当即时算法,我们的方法正在扩展在[Gao-Liu-Peng,20211]中推出的框架,用于计算具有较大能力的图表的最大流量,特别是显示如何减少在亚线性大小的一套螺旋盘上对同一问题的一般需求计算出电流的问题 -- -- 即使整个图上的需求得到支持。我们开发了新机制,以评估内点方法优化过程每个阶段的边缘的重要性。我们的方法正在扩展[Gao-Liu-Peng,2021]中为[Go-Pex2021]所推出的框架,这种能力依靠在内部的距离内有效的电流中建立新的电流之间的新的电流。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员