Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform. A policy trained with expensive data is rendered useless after making even a minor change to the robot hardware. In this paper, we address the challenging problem of adapting a policy, trained to perform a task, to a novel robotic hardware platform given only few demonstrations of robot motion trajectories on the target robot. We formulate it as a few-shot meta-learning problem where the goal is to find a meta-model that captures the common structure shared across different robotic platforms such that data-efficient adaptation can be performed. We achieve such adaptation by introducing a learning framework consisting of a probabilistic gradient-based meta-learning algorithm that models the uncertainty arising from the few-shot setting with a low-dimensional latent variable. We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots generated by varying the physical parameters of an existing set of robotic platforms. Our results show that the proposed method can successfully adapt a trained policy to different robotic platforms with novel physical parameters and the superiority of our meta-learning algorithm compared to state-of-the-art methods for the introduced few-shot policy adaptation problem.


翻译:强化强化学习方法可以取得显著的性能,但需要在同一机器人平台上收集大量培训数据。在对机器人硬件稍作改动后,经过昂贵数据培训的政策便变得毫无用处。在本文中,我们解决了将一项经过训练可以执行任务的政策改编成新的机器人硬件平台的挑战性问题,因为只展示了目标机器人上机器人运动轨迹的少数例子。我们把它发展成一个微小的元学习问题,目标是找到一个元模型,捕捉不同机器人平台共享的共同结构,以便进行数据高效的适应。我们通过引入一个由概率性梯度基元学习算法组成的学习框架来实现这种改编。这个框架是用来用一个低维潜伏变量模型模拟定位和真实机器人选择任务的框架。我们实验性地评估了400个模拟定位和实时机器人选择任务的框架,这些模型是现有成套机器人平台物理参数不同产生的。我们的结果显示,拟议的方法可以成功地将经过训练的政策调整到不同的机器人平台上,具有新的物理参数,以及我们元化学习算算法相对于状态的调整问题来说具有优势。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
42+阅读 · 2021年4月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2020年6月16日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员