We prove a new lower bound on the field size of locally repairable codes (LRCs). Additionally, we construct maximally recoverable (MR) codes which are cyclic. While a known construction for MR codes has the same parameters, it produces non-cyclic codes. Furthermore, we prove both necessary conditions and sufficient conditions that specify when the known non-cyclic MR codes may be permuted to become cyclic, thus proving our construction produces cyclic MR codes with new parameters. Furthermore, using our new bound on the field size, we show that the new cyclic MR codes have optimal field size in certain cases. Other known LRCs are also shown to have optimal field size in certain cases.
翻译:我们证明,对于当地可修理代码(LRCs)的实地尺寸,我们有了新的较低约束。此外,我们建造了极易回收的周期性代码。虽然已知的MR代码结构具有相同的参数,但它产生了非周期性代码。此外,我们证明,必要的条件和充分的条件都规定了已知的非周期性MR代码何时可以被移动成为循环性代码,从而证明我们的建筑产生了具有新参数的周期性MR代码。此外,使用我们新的对实地尺寸的约束,我们证明新的循环性MR代码在某些情况下具有最佳的字段尺寸。其他已知的LRC在某些情形下也有最佳的字段尺寸。