Given a finite alphabet $A$ and a binary relation $\tau\subseteq A^*\times A^*$, a set $X$ is $\tau$-{\it independent} if $ \tau(X)\cap X=\emptyset$. Given a quasi-metric $d$ over $A^*$ (in the meaning of \cite{W31}) and $k\ge 1$, we associate the relation $\tau_{d,k}$ defined by $(x,y)\in\tau_{d,k}$ if, and only if, $d(x,y)\le k$ \cite{CP02}.In the spirit of \cite{JK97,N21}, the error detection-correction capability of variable-length codes can be expressed in term of conditions over $\tau_{d,k}$. With respect to the prefix metric, the factor one, and every quasi-metric associated to (anti-)automorphisms of the free monoid, we examine whether those conditions are decidable for a given regular code.


翻译:根据限定的字母 $A 美元和二进制关系 $Tau\ subseteq A ⁇ 美元,如果如果 $(X)\ cap X {cap X ⁇ pretyset$ 美元,则设定的美元为$tau(tau) a 美元) 和二进制关系 $(tau) d,k}美元,如果而且只有 $(x,y)\le kite{CP02} 美元,则设定的美元为$tau(tau)(tau(x,y)\le k) 美元,则设定的美元为$(cite{JK97,N21}) 独立美元。如果准数美元超过 $(cite}) 美元(tite{W31} ) 美元和 美元(k) 美元, 和 1 美元, 我们把 美元(tu) 和 $(x, y) in\\ ind= en- le k} le k} equ- lecontical- contical deticticismismismismismismismismations of thes of the free, 我们检查这些条件是否可以确定给自由单定的代码是否正常代码。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员