Employing clustering strategy to assign unlabeled target images with pseudo labels has become a trend for person re-identification (re-ID) algorithms in domain adaptation. A potential limitation of these clustering-based methods is that they always tend to introduce noisy labels, which will undoubtedly hamper the performance of our re-ID system. To handle this limitation, an intuitive solution is to utilize collaborative training to purify the pseudo label quality. However, there exists a challenge that the complementarity of two networks, which inevitably share a high similarity, becomes weakened gradually as training process goes on; worse still, these approaches typically ignore to consider the self-discrepancy of intra-class relations. To address this issue, in this paper, we propose a multiple co-teaching framework for domain adaptive person re-ID, opening up a promising direction about self-discrepancy problem under unsupervised condition. On top of that, a mean-teaching mechanism is leveraged to enlarge the difference and discover more complementary features. Comprehensive experiments conducted on several large-scale datasets show that our method achieves competitive performance compared with the state-of-the-arts.
翻译:使用集群战略来分配带有假标签的未贴标签目标图像,这已成为个人在调整领域时重新识别(重新识别)算法的趋势。这些基于集群的方法的一个潜在限制是,它们总是倾向于采用吵闹标签,这无疑会妨碍我们重新识别系统的运行。为了处理这一限制,一个直观的解决办法是利用合作培训净化假标签质量。然而,随着培训进程的进行,两个网络之间不可避免地具有高度相似性的互补性逐渐削弱;更糟糕的是,这些方法通常忽略考虑阶级内部关系的自我失常。为了解决这个问题,我们在本文件中提议一个多处共同教育框架,用于对在不受监督的条件下自我错乱问题开辟一个有希望的方向。除此之外,一个中性教学机制被用来扩大差异,发现更多的互补特征。在几个大型数据集上进行的全面实验表明,我们的方法取得了与状态相比具有竞争力的业绩。