Graph neural networks are widely used tools for graph prediction tasks. Motivated by their empirical performance, prior works have developed generalization bounds for graph neural networks, which scale with graph structures in terms of the maximum degree. In this paper, we present generalization bounds that instead scale with the largest singular value of the graph neural network's feature diffusion matrix. These bounds are numerically much smaller than prior bounds for real-world graphs. We also construct a lower bound of the generalization gap that matches our upper bound asymptotically. To achieve these results, we analyze a unified model that includes prior works' settings (i.e., convolutional and message-passing networks) and new settings (i.e., graph isomorphism networks). Our key idea is to measure the stability of graph neural networks against noise perturbations using Hessians. Empirically, we find that Hessian-based measurements correlate with the observed generalization gaps of graph neural networks accurately; Optimizing noise stability properties for fine-tuning pretrained graph neural networks also improves test performance on several graph-level classification tasks.
翻译:图形神经网络是用于图形预测任务的广泛工具。 以其经验性能为动力, 先前的工程为图形神经网络开发了通用线条, 其规模以最大度为图形结构。 在本文中, 我们展示了图形神经网络特征扩散矩阵的最大单值的概括线条。 这些界限在数字上比真实世界图形的先前界限要小得多。 我们还构建了一个与我们所观察到的图形神经网络一般化差距相匹配的更低的通用线条。 为了实现这些结果, 我们分析了一个统一的模型, 其中包括以前的工程设置( 即, 进化和信件传递网络) 和新的设置( 如, 图形等形态网络) 。 我们的关键想法是测量图形神经网络在使用赫斯图时的噪音扰动的稳定性。 我们发现, 基于赫斯的测量数据与观察到的图形神经网络一般化差距相匹配。 为了实现这些结果, 我们分析一个统一的模型, 包括前工程设置( 即, 进化和信件传递网络) 和新设置( 图形等) 以及新的设置 。 我们的主要想法是测量数级任务分类的性。