Phase-type (PH) distributions are a popular tool for the analysis of univariate risks in numerous actuarial applications. Their multivariate counterparts (MPH$^\ast$), however, have not seen such a proliferation, due to lack of explicit formulas and complicated estimation procedures. A simple construction of multivariate phase-type distributions -- mPH -- is proposed for the parametric description of multivariate risks, leading to models of considerable probabilistic flexibility and statistical tractability. The main idea is to start different Markov processes at the same state, and allow them to evolve independently thereafter, leading to dependent absorption times. By dimension augmentation arguments, this construction can be cast into the umbrella of MPH$^\ast$ class, but enjoys explicit formulas which the general specification lacks, including common measures of dependence. Moreover, it is shown that the class is still rich enough to be dense on the set of multivariate risks supported on the positive orthant, and it is the smallest known sub-class to have this property. In particular, the latter result provides a new short proof of the denseness of the MPH$^\ast$ class. In practice this means that the mPH class allows for modeling of bivariate risks with any given correlation or copula. We derive an EM algorithm for its statistical estimation, and illustrate it on bivariate insurance data. Extensions to more general settings are outlined.


翻译:阶段类型分布( PH) 是分析多种精算应用中的单向风险的流行工具。 但是,由于缺乏明确的公式和复杂的估算程序,它们的多变量对应方(MPH$ ⁇ ast$)没有看到这种扩散。 提议简单构建多变量类型分布( mPH),用于多变量风险的参数描述,从而产生相当的概率灵活性和统计可感性模型。 主要想法是在同一州启动不同的马可夫流程,并允许它们随后独立演变,导致依赖性吸收时间。 根据维度增强参数,这一构建可以投放到 MPH$ ⁇ ast 类的伞状中,但具有一般规格缺乏的明确公式,包括共同依赖度的衡量标准。 此外,还表明该类别仍然足够丰富,在支持正度或强度的多变量风险组合上仍然十分密集,而拥有这一属性的子类最小为已知的子类。 特别是,后一种结果为MPHH$ +Qast$ 类的密度模型提供了新的短期证据。 其分类和双级的统计模型的推导算。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2021年8月31日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员